Elementary maths for GMT

Probability and Statistics

Part 3: Multidimensional Statistics

Covariance

- The covariance is the extent to which two variables vary together. The variance is a special case of covariance
- Let X and Y be two real-valued random variables
- Covariance definition

$$
\operatorname{Cov}(X, Y)=E((X-E(X)) \times(Y-E(Y))
$$

or, equivalent

$$
\operatorname{Cov}(X, Y)=E(X \times Y)-E(X) \times E(Y)
$$

- Reminder

$$
\begin{aligned}
& -\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2} \\
& -\operatorname{Cov}(X, X)=\operatorname{Var}(X)
\end{aligned}
$$

Covariance: example 1

- Suppose some measurements are

$$
\begin{aligned}
& (X, Y)=(\text { length, weight }): \\
& \quad\{(1.80,66),(1.87,92),(1.84,88),(1.73,70)\}
\end{aligned}
$$

- $E(X)=1.81 \mathrm{~m}$
- $E(Y)=79 \mathrm{~kg}$
- $E(X \times Y)=\frac{1}{n} \sum_{i=1}^{n} x_{i} \times y_{i}=143.465$
- $\operatorname{Cov}(X, Y)=E(X \times Y)-E(X) \times E(Y)=143.465-$ $1.81 \times 79=0.475 \mathrm{~kg} . \mathrm{m}$

Covariance: example 2

- Suppose some measurements are

$$
\begin{aligned}
& (X, Y)=(\text { length, weight }): \\
& \quad\{(1.80,74),(1.87,92),(1.84,88),(1.73,62)\}
\end{aligned}
$$

- $E(X)=1.81 \mathrm{~m}$
- $E(Y)=79 \mathrm{~kg}$
- $E(X \times Y)=143.605$
- $\operatorname{Cov}(X, Y)=E(X \times Y)-E(X) \times E(Y)=143.605-$ $1.81 \times 79=0.615 \mathrm{~kg} . \mathrm{m}$
- The covariance is larger so the variables X and Y vary more together than in example 1

Covariance: examples 1 and 2

Correlation

- The correlation is a measure for the degree in which two variables X and Y depend on each other
- Most common measure is the Pearson correlation coefficient

$$
\operatorname{corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \times \sigma_{Y}}
$$

- Is always between -1 and +1
- Is dimensionless (unlike covariance)

Correlation

- Pearson's correlation coefficients

1.0	0.8	0.4	0.0	-0.4	-0.8	-1.0
				$y=$		
1.0	1.0	1.0		-1.0	-1.0	-1.0
		\cdots	.-------.......			
0.0	0.0	0.0	0.0	0.0	0.0	0.0

Estimator for $\operatorname{Cov}(X, Y)$

- As seen previously $\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\mu_{S}\right)^{2}$ is an unbiased estimator for variance from a sample
- An unbiased estimator for covariance based on a sample is

$$
\widehat{\sigma_{x y}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)
$$

because $E\left(\widehat{\sigma_{x y}}\right)=\sigma_{x y}$

Covariance matrix

- The covariance of each pair of variables can be stored in a matrix
- Diagonal terms: $E\left(x_{i} x_{i}\right)-E\left(x_{i}\right) E\left(x_{i}\right)=\operatorname{Var}\left(x_{i}\right)$
- Other terms: $E\left(x_{i} x_{j}\right)-E\left(x_{i}\right) E\left(x_{j}\right)=\operatorname{Covar}\left(x_{i}, x_{j}\right)$

$$
\left[\begin{array}{cccc}
\operatorname{Var}\left(x_{1}\right) & \operatorname{Cov}\left(x_{1}, x_{2}\right) & \ldots & \operatorname{Cov}\left(x_{1}, x_{d}\right) \\
\operatorname{Cov}\left(x_{1}, x_{2}\right) & \operatorname{Var}\left(x_{2}\right) & \cdots & \operatorname{Cov}\left(x_{2}, x_{d}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left(x_{1}, x_{d}\right) & \operatorname{Cov}\left(x_{2}, x_{d}\right) & \cdots & \operatorname{Var}\left(x_{d}\right)
\end{array}\right]
$$

- The covariance matrix is symmetric

Covariance matrix

- Useful for analyzing relations between variables
- Example: Principal Component Analysis (PCA)
- Uses covariance in combination with eigenvectors
- Span an orthonormal basis of the covariance matrix where the covariance between new axes is minimal

Tests in statistics

- Null-hypothesis, denoted H_{0} is the statement that assumes there is no relationship or effect
- With a test, the null-hypothesis may be rejected or not
- We need a pre-specified significance level for this
- A result is significant if is unlikely that it occurred by chance
- An alternative hypothesis is denoted H_{1} and can only be accepted when H_{0} can be rejected

Test example

- Null-hypothesis H_{0} : a coin is fair. Significance level required set at 0.05
- Possible outcome of 6 tosses to be all the same (either heads or tails) has a probability of $2 / 64=1 / 32 \approx 0.03$, assuming H_{0}
- Possible outcome of 6 tosses to be five vs. one or more extreme has a probability of $12 / 64+2 / 64 \approx$ 0.22 , assuming H_{0}
- In the first experiment, H_{0} is rejected since $P\left(\right.$ outcome $\left.\mid H_{0}\right) \approx 0.03<0.05$, so the coin is biased
- In the second experiment we do not reject H_{0}

The t-test

- Founder is William Sealy Gosset
- Worked at the Guinness brewery to control quality of beer
- Wrote under the pseudonym "Student"
- Mostly worked during tea (t) time
- Hence known as the Student's t-test
- Goal of the t-test: test the validity of a null hypothesis

The t-test

Commonly performed t-tests:

- Compare the mean of a data set to a constant value and check whether the difference is significant
- one-sample location test
- Compare the means of two data sets and check whether the difference is significant
- two-sample location test

The t-test

- Examples
- Calculate whether the average weight of a package of pasta really is 500 gr . or smaller (one-sample location test)
- Calculate whether a weight reduction treatment is successful by comparing means before and after treatment (two-sample location test)
- Calculate whether a novel algorithm produces significant better results than its prior version or its competitors (two-sample location test with golden standard data)

1 -sided vs. 2 -sided tests

- A 1-sided test is used when you know beforehand that, if there is an effect of your treatment, one sample mean should definitely be greater / smaller than the other
- A 2-sided test is used when you don't know beforehand which way the effect should go, if your treatment has an effect at all
- We look at 1-sided tests only in EMGMT

The t-test

Conditions:

- Population(s) should follow a normal distribution
- In case of a single population, the population variance can be unknown; in that case, the (unbiased) estimator for the variance is used:

$$
\widehat{\sigma}_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\mu_{S}\right)^{2}
$$

One-sample t-test

- Test whether the mean equals a constant value μ_{0}, variance unknown, $H_{0}: \mu=\mu_{0}$
- Against hypothesis: $H_{1}: \mu<\mu_{0}$ or $H_{1}: \mu>\mu_{0}$
- The statistics then is $T=\frac{\bar{x}-\mu_{0}}{\widehat{\sigma}} \sqrt{n}$
- We compare this T value against a value from the table using the degrees of freedom ($d f=$ sample size -1) and the significance level
- We reject H_{0} if the probability to get T is smaller than the significance level

One-sample t-test

- "Sunshine" DVD players should last on average 5 years. A test on 20 DVD players reveals they lasted on average 4.9 years with $\hat{\sigma}=1.5$ years.

Test if the actual average life is significantly smaller (with significance level set at 0.05)

One-sample t-test

- $H_{0}: \mu=\mu_{0}$ and $H_{1}: \mu<\mu_{0}$

We test H_{1} against H_{0}, we reject H_{0} for too small T

- Our value of $T=(4.9-5) / 1.5 \times \sqrt{20}=-0.298$
- Table look-up $d f=19$ and significance is 0.05 gives us $T(0.05,19)=1.73$
- Meaning that the area of the tail of the t-distribution with $19 d f$ is 0.05 in the interval $[1.73, \infty$) (recall that the area is a probability)
- Since it is symmetric, this also holds for ($-\infty,-1.73$]

One-sample t-test

- Since $P(x \in(-\infty,-1.73])=0.05$, we can observe that $P(x \in(-\infty,-0.298]) \gg 0.05$, so the outcome of the test ($\mu=4.9$ and $\sigma=1.5$ or more extreme) is not so unlikely that one thinks it happens less than 5% of the times

Area left of -1.73 is 0.05

One-sample t-test

- $H_{0}: \mu=\mu_{0}$ and $H_{1}: \mu<\mu_{0}$

We test H_{1} against H_{0}, we reject H_{0} for too small T

- $T=-0.298$ and $T(0.05,19)=1.73$
- Note $P(T(19) \geq 1.73)=P(T(19) \leq-1.73)=0.05$
- Since T is not smaller than -1.73 , we cannot reject the null hypothesis, therefore we cannot prove H_{1}

One-sample t-test

- "Sunshine" DVD players should last on average 5 years. A test on 20 DVD players reveals they lasted on average 4.6 years with $\hat{\sigma}=1$ years.

Test if the actual average life is significantly smaller (with significance level set at 0.05)

One-sample t-test

- Our value of $T=(4.6-5) / 1 \times \sqrt{20}=-1.79$
- Table look-up $d f=19$ and significance is 0.05 gives us $T(0.05,19)=1.73$ and we still have $P(T(19) \geq 1.73)=P(T(19) \leq-1.73)=0.05$
- But now since T is smaller than -1.73 , we can reject the null hypothesis, and accept H_{1}

One-sample t-test

- Since $P(x \in(-\infty,-1.73])=0.05$, we can observe that $P(x \in(-\infty,-1.79])<0.05$, so the outcome of the test ($\mu=4.6$ and $\sigma=1$ or more extreme, given the null hypothesis) is more unlikely than 5% of the times

Two-sample (unpaired) t-test

- Check whether the mean between two sample sets (X and Y) of size n and m is equal
- The statistics is

$$
T=\frac{\bar{X}-\bar{Y}}{S_{X Y} \sqrt{\frac{1}{n}+\frac{1}{m}}}
$$

- Where $S_{X Y}$ is the unbiased weighted standard deviation

$$
S_{X Y}=\sqrt{\frac{(n-1) S_{X}^{2}+(m-1) S_{Y}^{2}}{n+m-2}}
$$

- Degrees of freedom: $n+m-2$

Two-sample (unpaired) t-test

- Example: To check whether a new engine really uses less gas (with significance 5\%), we determine how many liters are needed to perform a distance of 100 km (two groups of 10 cars; $n=m=10$)
- New engine (X): mean $=5.2, S_{X}=\sigma_{X}=0.8$
- Old engine (Y) : mean $=5.5, S_{Y}=\sigma_{Y}=0.5$

Two-sample (unpaired) t-test

- $Z=\operatorname{mean}(X)-\operatorname{mean}(Y)$
- $H_{0}: Z=0, H_{1}: Z<0$
- $S_{X Y}=0.667$
- $T=(5.2-5.5) / 0.667 \times \sqrt{5}=-1.0056$
- $P(T(18) \geq 1.73)=P(T(18) \leq-1.73)=0.05$
- We reject the null hypothesis for too small values of T
- Since $-1.0056>-1.73$, the null hypothesis is not rejected

Two-sample (unpaired) t-test

- Example: To check whether a new engine really makes it use less gas (with significance 5\%), we determine how many liters are needed for a distance of 100 km (two groups of 15 cars; $n=m=15$)
- New engine (X): mean $=5.2, S_{X}=\sigma_{X}=0.8$
- Old engine (Y) : mean $=5.5, S_{Y}=\sigma_{Y}=0.5$

Two-sample (unpaired) t-test

- $Z=\operatorname{mean}(X)-\operatorname{mean}(Y)$
- $H_{0}: Z=0, H_{1}: Z<0$
- $S_{X Y}=0.667$
- $T=(5.2-5.5) / 0.667 \times \sqrt{7.5}=-1.232$
- $P(T(28) \geq 1.701))=P(T(28) \leq-1.701)=0.05$
- We reject the null hypothesis for too small values of T
- Since $-1.232>-1.701$, the null hypothesis is not rejected

Two-sample (unpaired) t-test

- Note: the test statistic is such that
- A larger difference in mean can cause H_{0} to be rejected
- A larger sample size for X and/or Y can cause H_{0} to be rejected
- A smaller standard deviation (estimate) for X and/or Y can make H_{0} to be rejected

$$
T=\frac{\bar{X}-\bar{Y}}{S_{X Y} \sqrt{\frac{1}{n}+\frac{1}{m}}}
$$

$S_{X Y}=\sqrt{\frac{(n-1) S_{X}^{2}+(m-1) S_{Y}^{2}}{n+m-2}}$

Two-sample (paired) t-test

- Suppose we have a set of paired samples $\left(X_{i}, Y_{i}\right)$
- The sample set is of size n
- We define $Z=X-Y$
- Our null hypothesis is $H_{0}: \mu_{z}=0$
- Our test statistic is $T=\frac{\bar{Z}}{s_{Z}} \sqrt{n}$
where S_{Z} is the unbiased estimator for the standard deviation of Z

Two-sample (paired) t-test

- We want to test if a diet is effective (5\% significance), so we measure test subject's weights before and after the diet

Test subject	1	2	3	4	5	6	7	8	9	10
Weight before (X)	110	85	73	91	163	88	92	75	103	115
Weight after (Y)	99	83	75	86	141	79	96	70	91	102
Z = X - Y	11	2	-2	5	22	9	-4	5	12	13

- $H_{0}: Z=0, H_{1}: Z>0$
- We can calculate $\bar{Z}=7.3$ and $S_{Z}=7.75$

Two-sample (paired) t-test

- Then our value $T=7.3 / 7.75 \times \sqrt{10}=2.98$
- In the table $(d f=9, p=0.05)$, the critical value of T is 1.833 , i.e. $P\left(T \geq 1.833 \mid H_{0}\right)=0.05$
- Since our value $T=2.98$ is (much) larger, then $P\left(T \geq 2.98 \mid H_{0}\right)<0.05$, meaning that the probability of this outcome (or more extreme) given the null-hypothesis is less than 5% (the predefined significance level)
- Hence we reject the null-hypothesis, so yes, the diet is effective

Two-sample (paired) t-test

- Illustration
t-distribution for 9
degrees of freedom

Area right of 2.98 is <0.05

